Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Anytime Belief Propagation Using Sparse Domains (1311.3368v1)

Published 14 Nov 2013 in stat.ML, cs.AI, and cs.LG

Abstract: Belief Propagation has been widely used for marginal inference, however it is slow on problems with large-domain variables and high-order factors. Previous work provides useful approximations to facilitate inference on such models, but lacks important anytime properties such as: 1) providing accurate and consistent marginals when stopped early, 2) improving the approximation when run longer, and 3) converging to the fixed point of BP. To this end, we propose a message passing algorithm that works on sparse (partially instantiated) domains, and converges to consistent marginals using dynamic message scheduling. The algorithm grows the sparse domains incrementally, selecting the next value to add using prioritization schemes based on the gradients of the marginal inference objective. Our experiments demonstrate local anytime consistency and fast convergence, providing significant speedups over BP to obtain low-error marginals: up to 25 times on grid models, and up to 6 times on a real-world natural language processing task.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.