Papers
Topics
Authors
Recent
2000 character limit reached

Anytime Belief Propagation Using Sparse Domains (1311.3368v1)

Published 14 Nov 2013 in stat.ML, cs.AI, and cs.LG

Abstract: Belief Propagation has been widely used for marginal inference, however it is slow on problems with large-domain variables and high-order factors. Previous work provides useful approximations to facilitate inference on such models, but lacks important anytime properties such as: 1) providing accurate and consistent marginals when stopped early, 2) improving the approximation when run longer, and 3) converging to the fixed point of BP. To this end, we propose a message passing algorithm that works on sparse (partially instantiated) domains, and converges to consistent marginals using dynamic message scheduling. The algorithm grows the sparse domains incrementally, selecting the next value to add using prioritization schemes based on the gradients of the marginal inference objective. Our experiments demonstrate local anytime consistency and fast convergence, providing significant speedups over BP to obtain low-error marginals: up to 25 times on grid models, and up to 6 times on a real-world natural language processing task.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.