Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Architecture of an Ontology-Based Domain-Specific Natural Language Question Answering System (1311.3175v1)

Published 13 Nov 2013 in cs.CL and cs.IR

Abstract: Question answering (QA) system aims at retrieving precise information from a large collection of documents against a query. This paper describes the architecture of a Natural Language Question Answering (NLQA) system for a specific domain based on the ontological information, a step towards semantic web question answering. The proposed architecture defines four basic modules suitable for enhancing current QA capabilities with the ability of processing complex questions. The first module was the question processing, which analyses and classifies the question and also reformulates the user query. The second module allows the process of retrieving the relevant documents. The next module processes the retrieved documents, and the last module performs the extraction and generation of a response. Natural language processing techniques are used for processing the question and documents and also for answer extraction. Ontology and domain knowledge are used for reformulating queries and identifying the relations. The aim of the system is to generate short and specific answer to the question that is asked in the natural language in a specific domain. We have achieved 94 % accuracy of natural language question answering in our implementation.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.