Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Inference in Continuous Determinantal Point Processes (1311.2971v1)

Published 12 Nov 2013 in stat.ML, cs.LG, and stat.ME

Abstract: Determinantal point processes (DPPs) are random point processes well-suited for modeling repulsion. In machine learning, the focus of DPP-based models has been on diverse subset selection from a discrete and finite base set. This discrete setting admits an efficient sampling algorithm based on the eigendecomposition of the defining kernel matrix. Recently, there has been growing interest in using DPPs defined on continuous spaces. While the discrete-DPP sampler extends formally to the continuous case, computationally, the steps required are not tractable in general. In this paper, we present two efficient DPP sampling schemes that apply to a wide range of kernel functions: one based on low rank approximations via Nystrom and random Fourier feature techniques and another based on Gibbs sampling. We demonstrate the utility of continuous DPPs in repulsive mixture modeling and synthesizing human poses spanning activity spaces.

Citations (21)

Summary

We haven't generated a summary for this paper yet.