Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sparse Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms (1311.2745v4)

Published 12 Nov 2013 in cs.IT, math.IT, and math.OC

Abstract: The problem of signal recovery from its Fourier transform magnitude is of paramount importance in various fields of engineering and has been around for over 100 years. Due to the absence of phase information, some form of additional information is required in order to be able to uniquely identify the signal of interest. In this work, we focus our attention on discrete-time sparse signals (of length $n$). We first show that, if the DFT dimension is greater than or equal to $2n$, almost all signals with {\em aperiodic} support can be uniquely identified by their Fourier transform magnitude (up to time-shift, conjugate-flip and global phase). Then, we develop an efficient Two-stage Sparse Phase Retrieval algorithm (TSPR), which involves: (i) identifying the support, i.e., the locations of the non-zero components, of the signal using a combinatorial algorithm (ii) identifying the signal values in the support using a convex algorithm. We show that TSPR can {\em provably} recover most $O(n{1/2-\eps})$-sparse signals (up to a time-shift, conjugate-flip and global phase). We also show that, for most $O(n{1/4-\eps})$-sparse signals, the recovery is {\em robust} in the presence of measurement noise. Numerical experiments complement our theoretical analysis and verify the effectiveness of TSPR.

Citations (89)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.