Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Coinductive Equivalences for Higher-Order Probabilistic Functional Programs (Long Version) (1311.1722v1)

Published 7 Nov 2013 in cs.PL and cs.LO

Abstract: We study bisimulation and context equivalence in a probabilistic $\lambda$-calculus. The contributions of this paper are threefold. Firstly we show a technique for proving congruence of probabilistic applicative bisimilarity. While the technique follows Howe's method, some of the technicalities are quite different, relying on non-trivial "disentangling" properties for sets of real numbers. Secondly we show that, while bisimilarity is in general strictly finer than context equivalence, coincidence between the two relations is attained on pure $\lambda$-terms. The resulting equality is that induced by Levy-Longo trees, generally accepted as the finest extensional equivalence on pure $\lambda$-terms under a lazy regime. Finally, we derive a coinductive characterisation of context equivalence on the whole probabilistic language, via an extension in which terms akin to distributions may appear in redex position. Another motivation for the extension is that its operational semantics allows us to experiment with a different congruence technique, namely that of logical bisimilarity.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.