Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quantum Circuits and Spin(3n) Groups (1311.1666v4)

Published 7 Nov 2013 in quant-ph, cs.CC, math-ph, and math.MP

Abstract: All quantum gates with one and two qubits may be described by elements of $Spin$ groups due to isomorphisms $Spin(3) \simeq SU(2)$ and $Spin(6) \simeq SU(4)$. However, the group of $n$-qubit gates $SU(2n)$ for $n > 2$ has bigger dimension than $Spin(3n)$. A quantum circuit with one- and two-qubit gates may be used for construction of arbitrary unitary transformation $SU(2n)$. Analogously, the `$Spin(3n)$ circuits' are introduced in this work as products of elements associated with one- and two-qubit gates with respect to the above-mentioned isomorphisms. The matrix tensor product implementation of the $Spin(3n)$ group together with relevant models by usual quantum circuits with $2n$ qubits are investigated in such a framework. A certain resemblance with well-known sets of non-universal quantum gates e.g., matchgates, noninteracting-fermion quantum circuits) related with $Spin(2n)$ may be found in presented approach. Finally, a possibility of the classical simulation of such circuits in polynomial time is discussed.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)