Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantum Circuits and Spin(3n) Groups (1311.1666v4)

Published 7 Nov 2013 in quant-ph, cs.CC, math-ph, and math.MP

Abstract: All quantum gates with one and two qubits may be described by elements of $Spin$ groups due to isomorphisms $Spin(3) \simeq SU(2)$ and $Spin(6) \simeq SU(4)$. However, the group of $n$-qubit gates $SU(2n)$ for $n > 2$ has bigger dimension than $Spin(3n)$. A quantum circuit with one- and two-qubit gates may be used for construction of arbitrary unitary transformation $SU(2n)$. Analogously, the `$Spin(3n)$ circuits' are introduced in this work as products of elements associated with one- and two-qubit gates with respect to the above-mentioned isomorphisms. The matrix tensor product implementation of the $Spin(3n)$ group together with relevant models by usual quantum circuits with $2n$ qubits are investigated in such a framework. A certain resemblance with well-known sets of non-universal quantum gates e.g., matchgates, noninteracting-fermion quantum circuits) related with $Spin(2n)$ may be found in presented approach. Finally, a possibility of the classical simulation of such circuits in polynomial time is discussed.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.