Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

LA-CTR: A Limited Attention Collaborative Topic Regression for Social Media (1311.1247v1)

Published 5 Nov 2013 in cs.IR, cs.SI, and physics.soc-ph

Abstract: Probabilistic models can learn users' preferences from the history of their item adoptions on a social media site, and in turn, recommend new items to users based on learned preferences. However, current models ignore psychological factors that play an important role in shaping online social behavior. One such factor is attention, the mechanism that integrates perceptual and cognitive features to select the items the user will consciously process and may eventually adopt. Recent research has shown that people have finite attention, which constrains their online interactions, and that they divide their limited attention non-uniformly over other people. We propose a collaborative topic regression model that incorporates limited, non-uniformly divided attention. We show that the proposed model is able to learn more accurate user preferences than state-of-art models, which do not take human cognitive factors into account. Specifically we analyze voting on news items on the social news aggregator and show that our model is better able to predict held out votes than alternate models. Our study demonstrates that psycho-socially motivated models are better able to describe and predict observed behavior than models which only consider latent social structure and content.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.