Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Squared-Error of Generalized LASSO: A Precise Analysis (1311.0830v2)

Published 4 Nov 2013 in cs.IT, math.IT, math.OC, and stat.ML

Abstract: We consider the problem of estimating an unknown signal $x_0$ from noisy linear observations $y = Ax_0 + z\in Rm$. In many practical instances, $x_0$ has a certain structure that can be captured by a structure inducing convex function $f(\cdot)$. For example, $\ell_1$ norm can be used to encourage a sparse solution. To estimate $x_0$ with the aid of $f(\cdot)$, we consider the well-known LASSO method and provide sharp characterization of its performance. We assume the entries of the measurement matrix $A$ and the noise vector $z$ have zero-mean normal distributions with variances $1$ and $\sigma2$ respectively. For the LASSO estimator $x*$, we attempt to calculate the Normalized Square Error (NSE) defined as $\frac{|x*-x_0|_22}{\sigma2}$ as a function of the noise level $\sigma$, the number of observations $m$ and the structure of the signal. We show that, the structure of the signal $x_0$ and choice of the function $f(\cdot)$ enter the error formulae through the summary parameters $D(cone)$ and $D(\lambda)$, which are defined as the Gaussian squared-distances to the subdifferential cone and to the $\lambda$-scaled subdifferential, respectively. The first LASSO estimator assumes a-priori knowledge of $f(x_0)$ and is given by $\arg\min_{x}{{|y-Ax|2}~\text{subject to}~f(x)\leq f(x_0)}$. We prove that its worst case NSE is achieved when $\sigma\rightarrow 0$ and concentrates around $\frac{D(cone)}{m-D(cone)}$. Secondly, we consider $\arg\min{x}{|y-Ax|2+\lambda f(x)}$, for some $\lambda\geq 0$. This time the NSE formula depends on the choice of $\lambda$ and is given by $\frac{D(\lambda)}{m-D(\lambda)}$. We then establish a mapping between this and the third estimator $\arg\min{x}{\frac{1}{2}|y-Ax|_22+ \lambda f(x)}$. Finally, for a number of important structured signal classes, we translate our abstract formulae to closed-form upper bounds on the NSE.

Citations (126)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube