Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Abstract Acceleration of General Linear Loops (1311.0768v2)

Published 4 Nov 2013 in cs.PL

Abstract: We present abstract acceleration techniques for computing loop invariants for numerical programs with linear assignments and conditionals. Whereas abstract interpretation techniques typically over-approximate the set of reachable states iteratively, abstract acceleration captures the effect of the loop with a single, non-iterative transfer function applied to the initial states at the loop head. In contrast to previous acceleration techniques, our approach applies to any linear loop without restrictions. Its novelty lies in the use of the Jordan normal form decomposition of the loop body to derive symbolic expressions for the entries of the matrix modeling the effect of n>=0 iterations of the loop. The entries of such a matrix depend on $n$ through complex polynomial, exponential and trigonometric functions. Therefore, we introduces an abstract domain for matrices that captures the linear inequality relations between these complex expressions. This results in an abstract matrix for describing the fixpoint semantics of the loop. Our approach integrates smoothly into standard abstract interpreters and can handle programs with nested loops and loops containing conditional branches. We evaluate it over small but complex loops that are commonly found in control software, comparing it with other tools for computing linear loop invariants. The loops in our benchmarks typically exhibit polynomial, exponential and oscillatory behaviors that present challenges to existing approaches. Our approach finds non-trivial invariants to prove useful bounds on the values of variables for such loops, clearly outperforming the existing approaches in terms of precision while exhibiting good performance.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.