Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Particle filter-based Gaussian process optimisation for parameter inference (1311.0689v2)

Published 4 Nov 2013 in stat.CO and stat.ML

Abstract: We propose a novel method for maximum likelihood-based parameter inference in nonlinear and/or non-Gaussian state space models. The method is an iterative procedure with three steps. At each iteration a particle filter is used to estimate the value of the log-likelihood function at the current parameter iterate. Using these log-likelihood estimates, a surrogate objective function is created by utilizing a Gaussian process model. Finally, we use a heuristic procedure to obtain a revised parameter iterate, providing an automatic trade-off between exploration and exploitation of the surrogate model. The method is profiled on two state space models with good performance both considering accuracy and computational cost.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.