Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Nearly Optimal Sample Size in Hypothesis Testing for High-Dimensional Regression (1311.0274v1)

Published 1 Nov 2013 in math.ST, cs.IT, cs.LG, math.IT, stat.ME, and stat.TH

Abstract: We consider the problem of fitting the parameters of a high-dimensional linear regression model. In the regime where the number of parameters $p$ is comparable to or exceeds the sample size $n$, a successful approach uses an $\ell_1$-penalized least squares estimator, known as Lasso. Unfortunately, unlike for linear estimators (e.g., ordinary least squares), no well-established method exists to compute confidence intervals or p-values on the basis of the Lasso estimator. Very recently, a line of work \cite{javanmard2013hypothesis, confidenceJM, GBR-hypothesis} has addressed this problem by constructing a debiased version of the Lasso estimator. In this paper, we study this approach for random design model, under the assumption that a good estimator exists for the precision matrix of the design. Our analysis improves over the state of the art in that it establishes nearly optimal \emph{average} testing power if the sample size $n$ asymptotically dominates $s_0 (\log p)2$, with $s_0$ being the sparsity level (number of non-zero coefficients). Earlier work obtains provable guarantees only for much larger sample size, namely it requires $n$ to asymptotically dominate $(s_0 \log p)2$. In particular, for random designs with a sparse precision matrix we show that an estimator thereof having the required properties can be computed efficiently. Finally, we evaluate this approach on synthetic data and compare it with earlier proposals.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.