Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Capturing Variation and Uncertainty in Human Judgment (1311.0251v2)

Published 29 Oct 2013 in cs.IR and cs.HC

Abstract: The well-studied problem of statistical rank aggregation has been applied to comparing sports teams, information retrieval, and most recently to data generated by human judgment. Such human-generated rankings may be substantially different from traditional statistical ranking data. In this work, we show that a recently proposed generalized random utility model reveals distinctive patterns in human judgment across three different domains, and provides a succinct representation of variance in both population preferences and imperfect perception. In contrast, we also show that classical statistical ranking models fail to capture important features from human-generated input. Our work motivates the use of more flexible ranking models for representing and describing the collective preferences or decision-making of human participants.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.