Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Revisiting Aggregation for Data Intensive Applications: A Performance Study (1311.0059v1)

Published 31 Oct 2013 in cs.DB

Abstract: Aggregation has been an important operation since the early days of relational databases. Today's Big Data applications bring further challenges when processing aggregation queries, demanding adaptive aggregation algorithms that can process large volumes of data relative to a potentially limited memory budget (especially in multiuser settings). Despite its importance, the design and evaluation of aggregation algorithms has not received the same attention that other basic operators, such as joins, have received in the literature. As a result, when considering which aggregation algorithm(s) to implement in a new parallel Big Data processing platform (AsterixDB), we faced a lack of "off the shelf" answers that we could simply read about and then implement based on prior performance studies. In this paper we revisit the engineering of efficient local aggregation algorithms for use in Big Data platforms. We discuss the salient implementation details of several candidate algorithms and present an in-depth experimental performance study to guide future Big Data engine developers. We show that the efficient implementation of the aggregation operator for a Big Data platform is non-trivial and that many factors, including memory usage, spilling strategy, and I/O and CPU cost, should be considered. Further, we introduce precise cost models that can help in choosing an appropriate algorithm based on input parameters including memory budget, grouping key cardinality, and data skew.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.