Papers
Topics
Authors
Recent
2000 character limit reached

Parameterless Optimal Approximate Message Passing (1311.0035v1)

Published 31 Oct 2013 in cs.IT, math.IT, math.ST, stat.ML, and stat.TH

Abstract: Iterative thresholding algorithms are well-suited for high-dimensional problems in sparse recovery and compressive sensing. The performance of this class of algorithms depends heavily on the tuning of certain threshold parameters. In particular, both the final reconstruction error and the convergence rate of the algorithm crucially rely on how the threshold parameter is set at each step of the algorithm. In this paper, we propose a parameter-free approximate message passing (AMP) algorithm that sets the threshold parameter at each iteration in a fully automatic way without either having an information about the signal to be reconstructed or needing any tuning from the user. We show that the proposed method attains both the minimum reconstruction error and the highest convergence rate. Our method is based on applying the Stein unbiased risk estimate (SURE) along with a modified gradient descent to find the optimal threshold in each iteration. Motivated by the connections between AMP and LASSO, it could be employed to find the solution of the LASSO for the optimal regularization parameter. To the best of our knowledge, this is the first work concerning parameter tuning that obtains the fastest convergence rate with theoretical guarantees.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube