Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Hybrid Local Search for Simplified Protein Structure Prediction (1310.8583v1)

Published 31 Oct 2013 in cs.CE and cs.AI

Abstract: Protein structure prediction based on Hydrophobic-Polar energy model essentially becomes searching for a conformation having a compact hydrophobic core at the center. The hydrophobic core minimizes the interaction energy between the amino acids of the given protein. Local search algorithms can quickly find very good conformations by moving repeatedly from the current solution to its "best" neighbor. However, once such a compact hydrophobic core is found, the search stagnates and spends enormous effort in quest of an alternative core. In this paper, we attempt to restructure segments of a conformation with such compact core. We select one large segment or a number of small segments and apply exhaustive local search. We also apply a mix of heuristics so that one heuristic can help escape local minima of another. We evaluated our algorithm by using Face Centered Cubic (FCC) Lattice on a set of standard benchmark proteins and obtain significantly better results than that of the state-of-the-art methods.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.