Emergent Mind

Tunable and Growing Network Generation Model with Community Structures

(1310.8396)
Published Oct 31, 2013 in cs.SI and physics.soc-ph

Abstract

Recent years have seen a growing interest in the modeling and simulation of social networks to understand several social phenomena. Two important classes of networks, small world and scale free networks have gained a lot of research interest. Another important characteristic of social networks is the presence of community structures. Many social processes such as information diffusion and disease epidemics depend on the presence of community structures making it an important property for network generation models to be incorporated. In this paper, we present a tunable and growing network generation model with small world and scale free properties as well as the presence of community structures. The major contribution of this model is that the communities thus created satisfy three important structural properties: connectivity within each community follows power-law, communities have high clustering coefficient and hierarchical community structures are present in the networks generated using the proposed model. Furthermore, the model is highly robust and capable of producing networks with a number of different topological characteristics varying clustering coefficient and inter-cluster edges. Our simulation results show that the model produces small world and scale free networks along with the presence of communities depicting real world societies and social networks.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.