Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Undecidable First-Order Theories of Affine Geometries (1310.8200v3)

Published 29 Oct 2013 in cs.LO and math.LO

Abstract: Tarski initiated a logic-based approach to formal geometry that studies first-order structures with a ternary betweenness relation \beta, and a quaternary equidistance relation \equiv. Tarski established, inter alia, that the first-order (FO) theory of (R2,\beta,\equiv) is decidable. Aiello and van Benthem (2002) conjectured that the FO-theory of expansions of (R2,\beta) with unary predicates is decidable. We refute this conjecture by showing that for all n>1, the FO-theory of the class of expansions of (R2,\beta) with just one unary predicate is not even arithmetical. We also define a natural and comprehensive class C of geometric structures (T,\beta), and show that for each structure (T,\beta) in C, the FO-theory of the class of expansions of (T,\beta) with a single unary predicate is undecidable. We then consider classes of expansions of structures (T,\beta) with a restricted unary predicate, for example a finite predicate, and establish a variety of related undecidability results. In addition to decidability questions, we briefly study the expressivities of universal MSO and weak universal MSO over expansions of (Rn,\beta). While the logics are incomparable in general, over expansions of (Rn,\beta), formulae of weak universal MSO translate into equivalent formulae of universal MSO.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube