Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Moving in temporal graphs with very sparse random availability of edges (1310.7898v1)

Published 29 Oct 2013 in cs.DS

Abstract: In this work we consider temporal graphs, i.e. graphs, each edge of which is assigned a set of discrete time-labels drawn from a set of integers. The labels of an edge indicate the discrete moments in time at which the edge is available. We also consider temporal paths in a temporal graph, i.e. paths whose edges are assigned a strictly increasing sequence of labels. Furthermore, we assume the uniform case (UNI-CASE), in which every edge of a graph is assigned exactly one time label from a set of integers and the time labels assigned to the edges of the graph are chosen randomly and independently, with the selection following the uniform distribution. We call uniform random temporal graphs the graphs that satisfy the UNI-CASE. We begin by deriving the expected number of temporal paths of a given length in the uniform random temporal clique. We define the term temporal distance of two vertices, which is the arrival time, i.e. the time-label of the last edge, of the temporal path that connects those vertices, which has the smallest arrival time amongst all temporal paths that connect those vertices. We then propose and study two statistical properties of temporal graphs. One is the maximum expected temporal distance which is, as the term indicates, the maximum of all expected temporal distances in the graph. The other one is the temporal diameter which, loosely speaking, is the expectation of the maximum temporal distance in the graph. We derive the maximum expected temporal distance of a uniform random temporal star graph as well as an upper bound on both the maximum expected temporal distance and the temporal diameter of the normalized version of the uniform random temporal clique, in which the largest time-label available equals the number of vertices. Finally, we provide an algorithm that solves an optimization problem on a specific type of temporal (multi)graphs of two vertices.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.