Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

EPOBF: Energy Efficient Allocation of Virtual Machines in High Performance Computing Cloud (1310.7801v3)

Published 29 Oct 2013 in cs.DC, cs.NI, and cs.PF

Abstract: Cloud computing has become more popular in provision of computing resources under virtual machine (VM) abstraction for high performance computing (HPC) users to run their applications. A HPC cloud is such cloud computing environment. One of challenges of energy efficient resource allocation for VMs in HPC cloud is tradeoff between minimizing total energy consumption of physical machines (PMs) and satisfying Quality of Service (e.g. performance). On one hand, cloud providers want to maximize their profit by reducing the power cost (e.g. using the smallest number of running PMs). On the other hand, cloud customers (users) want highest performance for their applications. In this paper, we focus on the scenario that scheduler does not know global information about user jobs and user applications in the future. Users will request shortterm resources at fixed start times and non interrupted durations. We then propose a new allocation heuristic (named Energy-aware and Performance per watt oriented Bestfit (EPOBF)) that uses metric of performance per watt to choose which most energy-efficient PM for mapping each VM (e.g. maximum of MIPS per Watt). Using information from Feitelson's Parallel Workload Archive to model HPC jobs, we compare the proposed EPOBF to state of the art heuristics on heterogeneous PMs (each PM has multicore CPU). Simulations show that the EPOBF can reduce significant total energy consumption in comparison with state of the art allocation heuristics.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.