Delaunay stability via perturbations (1310.7696v2)
Abstract: We present an algorithm that takes as input a finite point set in Euclidean space, and performs a perturbation that guarantees that the Delaunay triangulation of the resulting perturbed point set has quantifiable stability with respect to the metric and the point positions. There is also a guarantee on the quality of the simplices: they cannot be too flat. The algorithm provides an alternative tool to the weighting or refinement methods to remove poorly shaped simplices in Delaunay triangulations of arbitrary dimension, but in addition it provides a guarantee of stability for the resulting triangulation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.