Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Finding Approximate Nash Equilibria of Bimatrix Games via Payoff Queries (1310.7419v2)

Published 28 Oct 2013 in cs.GT

Abstract: We study the deterministic and randomized query complexity of finding approximate equilibria in bimatrix games. We show that the deterministic query complexity of finding an $\epsilon$-Nash equilibrium when $\epsilon < \frac{1}{2}$ is $\Omega(k2)$, even in zero-one constant-sum games. In combination with previous results \cite{FGGS13}, this provides a complete characterization of the deterministic query complexity of approximate Nash equilibria. We also study randomized querying algorithms. We give a randomized algorithm for finding a $(\frac{3 - \sqrt{5}}{2} + \epsilon)$-Nash equilibrium using $O(\frac{k \cdot \log k}{\epsilon2})$ payoff queries, which shows that the $\frac{1}{2}$ barrier for deterministic algorithms can be broken by randomization. For well-supported Nash equilibria (WSNE), we first give a randomized algorithm for finding an $\epsilon$-WSNE of a zero-sum bimatrix game using $O(\frac{k \cdot \log k}{\epsilon4})$ payoff queries, and we then use this to obtain a randomized algorithm for finding a $(\frac{2}{3} + \epsilon)$-WSNE in a general bimatrix game using $O(\frac{k \cdot \log k}{\epsilon4})$ payoff queries. Finally, we initiate the study of lower bounds against randomized algorithms in the context of bimatrix games, by showing that randomized algorithms require $\Omega(k2)$ payoff queries in order to find a $\frac{1}{6k}$-Nash equilibrium, even in zero-one constant-sum games. In particular, this rules out query-efficient randomized algorithms for finding exact Nash equilibria.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube