Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relative Deviation Learning Bounds and Generalization with Unbounded Loss Functions (1310.5796v4)

Published 22 Oct 2013 in cs.LG

Abstract: We present an extensive analysis of relative deviation bounds, including detailed proofs of two-sided inequalities and their implications. We also give detailed proofs of two-sided generalization bounds that hold in the general case of unbounded loss functions, under the assumption that a moment of the loss is bounded. These bounds are useful in the analysis of importance weighting and other learning tasks such as unbounded regression.

Citations (36)

Summary

We haven't generated a summary for this paper yet.