Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Massive Query Expansion by Exploiting Graph Knowledge Bases (1310.5698v1)

Published 21 Oct 2013 in cs.IR

Abstract: Keyword based search engines have problems with term ambiguity and vocabulary mismatch. In this paper, we propose a query expansion technique that enriches queries expressed as keywords and short natural language descriptions. We present a new massive query expansion strategy that enriches queries using a knowledge base by identifying the query concepts, and adding relevant synonyms and semantically related terms. We propose two approaches: (i) lexical expansion that locates the relevant concepts in the knowledge base; and, (ii) topological expansion that analyzes the network of relations among the concepts, and suggests semantically related terms by path and community analysis of the knowledge graph. We perform our expansions by using two versions of the Wikipedia as knowledge base, concluding that the combination of both lexical and topological expansion provides improvements of the system's precision up to more than 27%.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.