Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

GRE: A Graph Runtime Engine for Large-Scale Distributed Graph-Parallel Applications (1310.5603v1)

Published 21 Oct 2013 in cs.DC

Abstract: Large-scale distributed graph-parallel computing is challenging. On one hand, due to the irregular computation pattern and lack of locality, it is hard to express parallelism efficiently. On the other hand, due to the scale-free nature, real-world graphs are hard to partition in balance with low cut. To address these challenges, several graph-parallel frameworks including Pregel and GraphLab (PowerGraph) have been developed recently. In this paper, we present an alternative framework, Graph Runtime Engine (GRE). While retaining the vertex-centric programming model, GRE proposes two new abstractions: 1) a Scatter-Combine computation model based on active message to exploit massive fined-grained edge-level parallelism, and 2) a Agent-Graph data model based on vertex factorization to partition and represent directed graphs. GRE is implemented on commercial off-the-shelf multi-core cluster. We experimentally evaluate GRE with three benchmark programs (PageRank, Single Source Shortest Path and Connected Components) on real-world and synthetic graphs of millions billion of vertices. Compared to PowerGraph, GRE shows 2.5~17 times better performance on 8~16 machines (192 cores). Specifically, the PageRank in GRE is the fastest when comparing to counterparts of other frameworks (PowerGraph, Spark,Twister) reported in public literatures. Besides, GRE significantly optimizes memory usage so that it can process a large graph of 1 billion vertices and 17 billion edges on our cluster with totally 768GB memory, while PowerGraph can only process less than half of this graph scale.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.