Maximizing Barber's bipartite modularity is also hard (1310.4656v1)
Abstract: Modularity introduced by Newman and Girvan [Phys. Rev. E 69, 026113 (2004)] is a quality function for community detection. Numerous methods for modularity maximization have been developed so far. In 2007, Barber [Phys. Rev. E 76, 066102 (2007)] introduced a variant of modularity called bipartite modularity which is appropriate for bipartite networks. Although maximizing the standard modularity is known to be NP-hard, the computational complexity of maximizing bipartite modularity has yet to be revealed. In this study, we prove that maximizing bipartite modularity is also NP-hard. More specifically, we show the NP-completeness of its decision version by constructing a reduction from a classical partitioning problem.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.