Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quantum Side Information: Uncertainty Relations, Extractors, Channel Simulations (1310.4581v1)

Published 17 Oct 2013 in quant-ph, cs.IT, math-ph, math.IT, and math.MP

Abstract: In the first part of this thesis, we discuss the algebraic approach to classical and quantum physics and develop information theoretic concepts within this setup. In the second part, we discuss the uncertainty principle in quantum mechanics. The principle states that even if we have full classical information about the state of a quantum system, it is impossible to deterministically predict the outcomes of all possible measurements. In comparison, the perspective of a quantum observer allows to have quantum information about the state of a quantum system. This then leads to an interplay between uncertainty and quantum correlations. We provide an information theoretic analysis by discussing entropic uncertainty relations with quantum side information. In the third part, we discuss the concept of randomness extractors. Classical and quantum randomness are an essential resource in information theory, cryptography, and computation. However, most sources of randomness exhibit only weak forms of unpredictability, and the goal of randomness extraction is to convert such weak randomness into (almost) perfect randomness. We discuss various constructions for classical and quantum randomness extractors, and we examine especially the performance of these constructions relative to an observer with quantum side information. In the fourth part, we discuss channel simulations. Shannon's noisy channel theorem can be understood as the use of a noisy channel to simulate a noiseless one. Channel simulations as we want to consider them here are about the reverse problem: simulating noisy channels from noiseless ones. Starting from the purely classical case (the classical reverse Shannon theorem), we develop various kinds of quantum channel simulation results. We achieve this by using classical and quantum randomness extractors that also work with respect to quantum side information.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)