Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Matching LBO eigenspace of non-rigid shapes via high order statistics (1310.4459v1)

Published 16 Oct 2013 in cs.GR

Abstract: A fundamental tool in shape analysis is the virtual embedding of the Riemannian manifold describing the geometry of a shape into Euclidean space. Several methods have been proposed to embed isometric shapes in flat domains while preserving distances measured on the manifold. Recently, attention has been given to embedding shapes into the eigenspace of the Lapalce-Beltrami operator. The Laplace-Beltrami eigenspace preserves the diffusion distance, and is invariant under isometric transformations. However, Laplace-Beltrami eigenfunctions computed independently for different shapes are often incompatible with each other. Applications involving multiple shapes, such as pointwise correspondence, would greatly benefit if their respective eigenfunctions were somehow matched. Here, we introduce a statistical approach for matching eigenfunctions. We consider the values of the eigenfunctions over the manifold as sampling of random variables, and try to match their multivariate distributions. Comparing distributions is done indirectly, using high order statistics. We show that the permutation and sign ambiguities of low order eigenfunctions, can be inferred by minimizing the difference of their third order moments. The sign ambiguities of antisymmetric eigenfunctions can be resolved by exploiting isometric invariant relations between the gradients of the eigenfunctions and the surface normal. We present experiments demonstrating the success of the proposed method applied to feature point correspondence.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube