Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Polyhedral Method to Compute All Affine Solution Sets of Sparse Polynomial Systems (1310.4128v1)

Published 15 Oct 2013 in cs.SC, math.AG, and math.CO

Abstract: To compute solutions of sparse polynomial systems efficiently we have to exploit the structure of their Newton polytopes. While the application of polyhedral methods naturally excludes solutions with zero components, an irreducible decomposition of a variety is typically understood in affine space, including also those components with zero coordinates. We present a polyhedral method to compute all affine solution sets of a polynomial system. The method enumerates all factors contributing to a generalized permanent. Toric solution sets are recovered as a special case of this enumeration. For sparse systems as adjacent 2-by-2 minors our methods scale much better than the techniques from numerical algebraic geometry.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.