Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Simple Dynamics for Plurality Consensus (1310.2858v3)

Published 10 Oct 2013 in cs.DM and cs.DC

Abstract: We study a \emph{Plurality-Consensus} process in which each of $n$ anonymous agents of a communication network initially supports an opinion (a color chosen from a finite set $[k]$). Then, in every (synchronous) round, each agent can revise his color according to the opinions currently held by a random sample of his neighbors. It is assumed that the initial color configuration exhibits a sufficiently large \emph{bias} $s$ towards a fixed plurality color, that is, the number of nodes supporting the plurality color exceeds the number of nodes supporting any other color by $s$ additional nodes. The goal is having the process to converge to the \emph{stable} configuration in which all nodes support the initial plurality. We consider a basic model in which the network is a clique and the update rule (called here the \emph{3-majority dynamics}) of the process is the following: each agent looks at the colors of three random neighbors and then applies the majority rule (breaking ties uniformly). We prove that the process converges in time $\mathcal{O}( \min{ k, (n/\log n){1/3} } \, \log n )$ with high probability, provided that $s \geqslant c \sqrt{ \min{ 2k, (n/\log n){1/3} }\, n \log n}$. We then prove that our upper bound above is tight as long as $k \leqslant (n/\log n){1/4}$. This fact implies an exponential time-gap between the plurality-consensus process and the \emph{median} process studied by Doerr et al. in [ACM SPAA'11]. A natural question is whether looking at more (than three) random neighbors can significantly speed up the process. We provide a negative answer to this question: In particular, we show that samples of polylogarithmic size can speed up the process by a polylogarithmic factor only.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.