Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Semidefinite Programming Based Preconditioning for More Robust Near-Separable Nonnegative Matrix Factorization (1310.2273v2)

Published 8 Oct 2013 in stat.ML, cs.LG, and math.OC

Abstract: Nonnegative matrix factorization (NMF) under the separability assumption can provably be solved efficiently, even in the presence of noise, and has been shown to be a powerful technique in document classification and hyperspectral unmixing. This problem is referred to as near-separable NMF and requires that there exists a cone spanned by a small subset of the columns of the input nonnegative matrix approximately containing all columns. In this paper, we propose a preconditioning based on semidefinite programming making the input matrix well-conditioned. This in turn can improve significantly the performance of near-separable NMF algorithms which is illustrated on the popular successive projection algorithm (SPA). The new preconditioned SPA is provably more robust to noise, and outperforms SPA on several synthetic data sets. We also show how an active-set method allow us to apply the preconditioning on large-scale real-world hyperspectral images.

Citations (54)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.