Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Every list-decodable code for high noise has abundant near-optimal rate puncturings (1310.1891v1)

Published 7 Oct 2013 in cs.IT and math.IT

Abstract: We show that any q-ary code with sufficiently good distance can be randomly punctured to obtain, with high probability, a code that is list decodable up to radius $1 - 1/q - \epsilon$ with near-optimal rate and list sizes. Our results imply that "most" Reed-Solomon codes are list decodable beyond the Johnson bound, settling the long-standing open question of whether any Reed Solomon codes meet this criterion. More precisely, we show that a Reed-Solomon code with random evaluation points is, with high probability, list decodable up to radius $1 - \epsilon$ with list sizes $O(1/\epsilon)$ and rate $\Omega(\epsilon)$. As a second corollary of our argument, we obtain improved bounds on the list decodability of random linear codes over large fields. Our approach exploits techniques from high dimensional probability. Previous work used similar tools to obtain bounds on the list decodability of random linear codes, but the bounds did not scale with the size of the alphabet. In this paper, we use a chaining argument to deal with large alphabet sizes.

Citations (56)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.