Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Every list-decodable code for high noise has abundant near-optimal rate puncturings (1310.1891v1)

Published 7 Oct 2013 in cs.IT and math.IT

Abstract: We show that any q-ary code with sufficiently good distance can be randomly punctured to obtain, with high probability, a code that is list decodable up to radius $1 - 1/q - \epsilon$ with near-optimal rate and list sizes. Our results imply that "most" Reed-Solomon codes are list decodable beyond the Johnson bound, settling the long-standing open question of whether any Reed Solomon codes meet this criterion. More precisely, we show that a Reed-Solomon code with random evaluation points is, with high probability, list decodable up to radius $1 - \epsilon$ with list sizes $O(1/\epsilon)$ and rate $\Omega(\epsilon)$. As a second corollary of our argument, we obtain improved bounds on the list decodability of random linear codes over large fields. Our approach exploits techniques from high dimensional probability. Previous work used similar tools to obtain bounds on the list decodability of random linear codes, but the bounds did not scale with the size of the alphabet. In this paper, we use a chaining argument to deal with large alphabet sizes.

Citations (56)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.