Papers
Topics
Authors
Recent
2000 character limit reached

Symmetric Groups and Quotient Complexity of Boolean Operations (1310.1841v1)

Published 7 Oct 2013 in cs.FL

Abstract: The quotient complexity of a regular language L is the number of left quotients of L, which is the same as the state complexity of L. Suppose that L and L' are binary regular languages with quotient complexities m and n, and that the transition semigroups of the minimal deterministic automata accepting L and L' are the symmetric groups S_m and S_n of degrees m and n, respectively. Denote by o any binary boolean operation that is not a constant and not a function of one argument only. For m,n >= 2 with (m,n) not in {(2,2),(3,4),(4,3),(4,4)} we prove that the quotient complexity of LoL' is mn if and only either (a) m is not equal to n or (b) m=n and the bases (ordered pairs of generators) of S_m and S_n are not conjugate. For (m,n)\in {(2,2),(3,4),(4,3),(4,4)} we give examples to show that this need not hold. In proving these results we generalize the notion of uniform minimality to direct products of automata. We also establish a non-trivial connection between complexity of boolean operations and group theory.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.