Generalized Negative Binomial Processes and the Representation of Cluster Structures (1310.1800v1)
Abstract: The paper introduces the concept of a cluster structure to define a joint distribution of the sample size and its exchangeable random partitions. The cluster structure allows the probability distribution of the random partitions of a subset of the sample to be dependent on the sample size, a feature not presented in a partition structure. A generalized negative binomial process count-mixture model is proposed to generate a cluster structure, where in the prior the number of clusters is finite and Poisson distributed and the cluster sizes follow a truncated negative binomial distribution. The number and sizes of clusters can be controlled to exhibit distinct asymptotic behaviors. Unique model properties are illustrated with example clustering results using a generalized Polya urn sampling scheme. The paper provides new methods to generate exchangeable random partitions and to control both the cluster-number and cluster-size distributions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.