Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Linear Precoding Based on Polynomial Expansion: Large-Scale Multi-Cell MIMO Systems (1310.1799v2)

Published 7 Oct 2013 in cs.IT and math.IT

Abstract: Large-scale MIMO systems can yield a substantial improvement in spectral efficiency for future communication systems. Due to the finer spatial resolution achieved by a huge number of antennas at the base stations, these systems have shown to be robust to inter-user interference and the use of linear precoding is asymptotically optimal. However, most precoding schemes exhibit high computational complexity as the system dimensions increase. For example, the near-optimal RZF requires the inversion of a large matrix. This motivated our companion paper, where we proposed to solve the issue in single-cell multi-user systems by approximating the matrix inverse by a truncated polynomial expansion (TPE), where the polynomial coefficients are optimized to maximize the system performance. We have shown that the proposed TPE precoding with a small number of coefficients reaches almost the performance of RZF but never exceeds it. In a realistic multi-cell scenario involving large-scale multi-user MIMO systems, the optimization of RZF precoding has thus far not been feasible. This is mainly attributed to the high complexity of the scenario and the non-linear impact of the necessary regularizing parameters. On the other hand, the scalar weights in TPE precoding give hope for possible throughput optimization. Following the same methodology as in the companion paper, we exploit random matrix theory to derive a deterministic expression for the asymptotic SINR for each user. We also provide an optimization algorithm to approximate the weights that maximize the network-wide weighted max-min fairness. The optimization weights can be used to mimic the user throughput distribution of RZF precoding. Using simulations, we compare the network throughput of the TPE precoding with that of the suboptimal RZF scheme and show that our scheme can achieve higher throughput using a TPE order of only 3.

Citations (156)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.