Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

The Relevance of Proofs of the Rationality of Probability Theory to Automated Reasoning and Cognitive Models (1310.1328v1)

Published 4 Oct 2013 in cs.AI

Abstract: A number of well-known theorems, such as Cox's theorem and de Finetti's theorem. prove that any model of reasoning with uncertain information that satisfies specified conditions of "rationality" must satisfy the axioms of probability theory. I argue here that these theorems do not in themselves demonstrate that probabilistic models are in fact suitable for any specific task in automated reasoning or plausible for cognitive models. First, the theorems only establish that there exists some probabilistic model; they do not establish that there exists a useful probabilistic model, i.e. one with a tractably small number of numerical parameters and a large number of independence assumptions. Second, there are in general many different probabilistic models for a given situation, many of which may be far more irrational, in the usual sense of the term, than a model that violates the axioms of probability theory. I illustrate this second point with an extended examples of two tasks of induction, of a similar structure, where the reasonable probabilistic models are very different.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.