Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 200 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 44 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Online Learning of Dynamic Parameters in Social Networks (1310.0432v1)

Published 1 Oct 2013 in math.OC, cs.LG, cs.SI, and stat.ML

Abstract: This paper addresses the problem of online learning in a dynamic setting. We consider a social network in which each individual observes a private signal about the underlying state of the world and communicates with her neighbors at each time period. Unlike many existing approaches, the underlying state is dynamic, and evolves according to a geometric random walk. We view the scenario as an optimization problem where agents aim to learn the true state while suffering the smallest possible loss. Based on the decomposition of the global loss function, we introduce two update mechanisms, each of which generates an estimate of the true state. We establish a tight bound on the rate of change of the underlying state, under which individuals can track the parameter with a bounded variance. Then, we characterize explicit expressions for the steady state mean-square deviation(MSD) of the estimates from the truth, per individual. We observe that only one of the estimators recovers the optimal MSD, which underscores the impact of the objective function decomposition on the learning quality. Finally, we provide an upper bound on the regret of the proposed methods, measured as an average of errors in estimating the parameter in a finite time.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.