Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An analogue of Cobham's theorem for graph directed iterated function systems (1310.0309v3)

Published 1 Oct 2013 in math.DS and cs.FL

Abstract: Feng and Wang showed that two homogeneous iterated function systems in $\mathbb{R}$ with multiplicatively independent contraction ratios necessarily have different attractors. In this paper, we extend this result to graph directed iterated function systems in $\mathbb{R}n$ with contraction ratios that are of the form $\frac{1}{\beta}$, for integers $\beta$. By using a result of Boigelot et al., this allows us to give a proof of a conjecture of Adamczewski and Bell. In doing so, we link the graph directed iterated function systems to B\"uchi automata. In particular, this link extends to real numbers $\beta$. We introduce a logical formalism that permits to characterize sets of $\mathbb{R}n$ whose representations in base $\beta$ are recognized by some B\"uchi automata. This result depends on the algebraic properties of the base: $\beta$ being a Pisot or a Parry number. The main motivation of this work is to draw a general picture representing the different frameworks where an analogue of Cobham's theorem is known.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.