Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bibliometric-enhanced Retrieval Models for Big Scholarly Information Systems (1309.7949v1)

Published 30 Sep 2013 in cs.DL

Abstract: Bibliometric techniques are not yet widely used to enhance retrieval processes in digital libraries, although they offer value-added effects for users. In this paper we will explore how statistical modelling of scholarship, such as Bradfordizing or network analysis of coauthorship network, can improve retrieval services for specific communities, as well as for large, cross-domain large collections. This paper aims to raise awareness of the missing link between information retrieval (IR) and bibliometrics / scientometrics and to create a common ground for the incorporation of bibliometric-enhanced services into retrieval at the digital library interface.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.