Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CSIFT Based Locality-constrained Linear Coding for Image Classification (1309.7484v1)

Published 28 Sep 2013 in cs.CV

Abstract: In the past decade, SIFT descriptor has been witnessed as one of the most robust local invariant feature descriptors and widely used in various vision tasks. Most traditional image classification systems depend on the luminance-based SIFT descriptors, which only analyze the gray level variations of the images. Misclassification may happen since their color contents are ignored. In this article, we concentrate on improving the performance of existing image classification algorithms by adding color information. To achieve this purpose, different kinds of colored SIFT descriptors are introduced and implemented. Locality-constrained Linear Coding (LLC), a state-of-the-art sparse coding technology, is employed to construct the image classification system for the evaluation. The real experiments are carried out on several benchmarks. With the enhancements of color SIFT, the proposed image classification system obtains approximate 3% improvement of classification accuracy on the Caltech-101 dataset and approximate 4% improvement of classification accuracy on the Caltech-256 dataset.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube