Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Total Jensen divergences: Definition, Properties and k-Means++ Clustering (1309.7109v1)

Published 27 Sep 2013 in cs.IT and math.IT

Abstract: We present a novel class of divergences induced by a smooth convex function called total Jensen divergences. Those total Jensen divergences are invariant by construction to rotations, a feature yielding regularization of ordinary Jensen divergences by a conformal factor. We analyze the relationships between this novel class of total Jensen divergences and the recently introduced total Bregman divergences. We then proceed by defining the total Jensen centroids as average distortion minimizers, and study their robustness performance to outliers. Finally, we prove that the k-means++ initialization that bypasses explicit centroid computations is good enough in practice to guarantee probabilistically a constant approximation factor to the optimal k-means clustering.

Citations (41)

Summary

We haven't generated a summary for this paper yet.