Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bounded Approximate Symbolic Dynamic Programming for Hybrid MDPs (1309.6871v1)

Published 26 Sep 2013 in cs.AI

Abstract: Recent advances in symbolic dynamic programming (SDP) combined with the extended algebraic decision diagram (XADD) data structure have provided exact solutions for mixed discrete and continuous (hybrid) MDPs with piecewise linear dynamics and continuous actions. Since XADD-based exact solutions may grow intractably large for many problems, we propose a bounded error compression technique for XADDs that involves the solution of a constrained bilinear saddle point problem. Fortuitously, we show that given the special structure of this problem, it can be expressed as a bilevel linear programming problem and solved to optimality in finite time via constraint generation, despite having an infinite set of constraints. This solution permits the use of efficient linear program solvers for XADD compression and enables a novel class of bounded approximate SDP algorithms for hybrid MDPs that empirically offers order-of-magnitude speedups over the exact solution in exchange for a small approximation error.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.