Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Automorphism Groups of Graphical Models and Lifted Variational Inference (1309.6822v1)

Published 26 Sep 2013 in cs.AI

Abstract: Using the theory of group action, we first introduce the concept of the automorphism group of an exponential family or a graphical model, thus formalizing the general notion of symmetry of a probabilistic model. This automorphism group provides a precise mathematical framework for lifted inference in the general exponential family. Its group action partitions the set of random variables and feature functions into equivalent classes (called orbits) having identical marginals and expectations. Then the inference problem is effectively reduced to that of computing marginals or expectations for each class, thus avoiding the need to deal with each individual variable or feature. We demonstrate the usefulness of this general framework in lifting two classes of variational approximation for maximum a posteriori (MAP) inference: local linear programming (LP) relaxation and local LP relaxation with cycle constraints; the latter yields the first lifted variational inference algorithm that operates on a bound tighter than the local constraints.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.