Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sample Complexity of Multi-task Reinforcement Learning (1309.6821v1)

Published 26 Sep 2013 in cs.LG and stat.ML

Abstract: Transferring knowledge across a sequence of reinforcement-learning tasks is challenging, and has a number of important applications. Though there is encouraging empirical evidence that transfer can improve performance in subsequent reinforcement-learning tasks, there has been very little theoretical analysis. In this paper, we introduce a new multi-task algorithm for a sequence of reinforcement-learning tasks when each task is sampled independently from (an unknown) distribution over a finite set of Markov decision processes whose parameters are initially unknown. For this setting, we prove under certain assumptions that the per-task sample complexity of exploration is reduced significantly due to transfer compared to standard single-task algorithms. Our multi-task algorithm also has the desired characteristic that it is guaranteed not to exhibit negative transfer: in the worst case its per-task sample complexity is comparable to the corresponding single-task algorithm.

Citations (133)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.