Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Multiple-orientability Thresholds for Random Hypergraphs (1309.6772v1)

Published 26 Sep 2013 in cs.DM and math.CO

Abstract: A $k$-uniform hypergraph $H = (V, E)$ is called $\ell$-orientable, if there is an assignment of each edge $e\in E$ to one of its vertices $v\in e$ such that no vertex is assigned more than $\ell$ edges. Let $H_{n,m,k}$ be a hypergraph, drawn uniformly at random from the set of all $k$-uniform hypergraphs with $n$ vertices and $m$ edges. In this paper we establish the threshold for the $\ell$-orientability of $H_{n,m,k}$ for all $k\ge 3$ and $\ell \ge 2$, i.e., we determine a critical quantity $c_{k, \ell}*$ such that with probability $1-o(1)$ the graph $H_{n,cn,k}$ has an $\ell$-orientation if $c < c_{k, \ell}*$, but fails doing so if $c > c_{k, \ell}*$. Our result has various applications including sharp load thresholds for cuckoo hashing, load balancing with guaranteed maximum load, and massive parallel access to hard disk arrays.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.