Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Independent and Hitting Sets of Rectangles Intersecting a Diagonal Line : Algorithms and Complexity (1309.6659v2)

Published 25 Sep 2013 in cs.CG

Abstract: Finding a maximum independent set (MIS) of a given fam- ily of axis-parallel rectangles is a basic problem in computational geom- etry and combinatorics. This problem has attracted significant atten- tion since the sixties, when Wegner conjectured that the corresponding duality gap, i.e., the maximum possible ratio between the maximum independent set and the minimum hitting set (MHS), is bounded by a universal constant. An interesting special case, that may prove use- ful to tackling the general problem, is the diagonal-intersecting case, in which the given family of rectangles is intersected by a diagonal. Indeed, Chepoi and Felsner recently gave a factor 6 approximation algorithm for MHS in this setting, and showed that the duality gap is between 3/2 and 6. In this paper we improve upon these results. First we show that MIS in diagonal-intersecting families is NP-complete, providing one smallest subclass for which MIS is provably hard. Then, we derive an $O(n2)$-time algorithm for the maximum weight independent set when, in addition the rectangles intersect below the diagonal. This improves and extends a classic result of Lubiw, and amounts to obtain a 2-approximation algo- rithm for the maximum weight independent set of rectangles intersecting a diagonal. Finally, we prove that for diagonal-intersecting families the duality gap is between 2 and 4. The upper bound, which implies an approximation algorithm of the same factor, follows from a simple com- binatorial argument, while the lower bound represents the best known lower bound on the duality gap, even in the general case.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.