Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Predicting Adoption Probabilities in Social Networks (1309.6369v1)

Published 24 Sep 2013 in cs.SI and physics.soc-ph

Abstract: In a social network, adoption probability refers to the probability that a social entity will adopt a product, service, or opinion in the foreseeable future. Such probabilities are central to fundamental issues in social network analysis, including the influence maximization problem. In practice, adoption probabilities have significant implications for applications ranging from social network-based target marketing to political campaigns; yet, predicting adoption probabilities has not received sufficient research attention. Building on relevant social network theories, we identify and operationalize key factors that affect adoption decisions: social influence, structural equivalence, entity similarity, and confounding factors. We then develop the locally-weighted expectation-maximization method for Na\"ive Bayesian learning to predict adoption probabilities on the basis of these factors. The principal challenge addressed in this study is how to predict adoption probabilities in the presence of confounding factors that are generally unobserved. Using data from two large-scale social networks, we demonstrate the effectiveness of the proposed method. The empirical results also suggest that cascade methods primarily using social influence to predict adoption probabilities offer limited predictive power, and that confounding factors are critical to adoption probability predictions.

Citations (148)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.