Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Persistent Monitoring of Events with Stochastic Arrivals at Multiple Stations (1309.6041v5)

Published 24 Sep 2013 in cs.RO

Abstract: This paper introduces a new mobile sensor scheduling problem, involving a single robot tasked with monitoring several events of interest that occur at different locations. Of particular interest is the monitoring of transient events that can not be easily forecast. Application areas range from natural phenomena ({\em e.g.}, monitoring abnormal seismic activity around a volcano using a ground robot) to urban activities ({\em e.g.}, monitoring early formations of traffic congestion using an aerial robot). Motivated by those and many other examples, this paper focuses on problems in which the precise occurrence times of the events are unknown {\em a priori}, but statistics for their inter-arrival times are available. The robot's task is to monitor the events to optimize the following two objectives: {\em (i)} maximize the number of events observed and {\em (ii)} minimize the delay between two consecutive observations of events occurring at the same location. The paper considers the case when a robot is tasked with optimizing the event observations in a balanced manner, following a cyclic patrolling route. First, assuming the cyclic ordering of stations is known, we prove the existence and uniqueness of the optimal solution, and show that the optimal solution has desirable convergence and robustness properties. Our constructive proof also produces an efficient algorithm for computing the unique optimal solution with $O(n)$ time complexity, in which $n$ is the number of stations, with $O(\log n)$ time complexity for incrementally adding or removing stations. Except for the algorithm, most of the analysis remains valid when the cyclic order is unknown. We then provide a polynomial-time approximation scheme that gives a $(1+\epsilon)$-optimal solution for this more general, NP-hard problem.

Citations (70)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.