Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bayesian Quickest Change Point Detection with Sampling Right Constraints (1309.5396v2)

Published 20 Sep 2013 in cs.IT and math.IT

Abstract: In this paper, Bayesian quickest change detection problems with sampling right constraints are considered. Specifically, there is a sequence of random variables whose probability density function will change at an unknown time. The goal is to detect this change in a way such that a linear combination of the average detection delay and the false alarm probability is minimized. Two types of sampling right constrains are discussed. The first one is a limited sampling right constraint, in which the observer can take at most $N$ observations from this random sequence. Under this setup, we show that the cost function can be written as a set of iterative functions, which can be solved by Markov optimal stopping theory. The optimal stopping rule is shown to be a threshold rule. An asymptotic upper bound of the average detection delay is developed as the false alarm probability goes to zero. This upper bound indicates that the performance of the limited sampling right problem is close to that of the classic Bayesian quickest detection for several scenarios of practical interest. The second constraint discussed in this paper is a stochastic sampling right constraint, in which sampling rights are consumed by taking observations and are replenished randomly. The observer cannot take observations if there are no sampling rights left. We characterize the optimal solution, which has a very complex structure. For practical applications, we propose a low complexity algorithm, in which the sampling rule is to take observations as long as the observer has sampling rights left and the detection scheme is a threshold rule. We show that this low complexity scheme is first order asymptotically optimal as the false alarm probability goes to zero.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube