Multi-layer graph analysis for dynamic social networks (1309.5124v2)
Abstract: Modern social networks frequently encompass multiple distinct types of connectivity information; for instance, explicitly acknowledged friend relationships might complement behavioral measures that link users according to their actions or interests. One way to represent these networks is as multi-layer graphs, where each layer contains a unique set of edges over the same underlying vertices (users). Edges in different layers typically have related but distinct semantics; depending on the application multiple layers might be used to reduce noise through averaging, to perform multifaceted analyses, or a combination of the two. However, it is not obvious how to extend standard graph analysis techniques to the multi-layer setting in a flexible way. In this paper we develop latent variable models and methods for mining multi-layer networks for connectivity patterns based on noisy data.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.