Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating the MaxCover Problem with Bounded Frequencies in FPT Time (1309.4405v1)

Published 17 Sep 2013 in cs.DS

Abstract: We study approximation algorithms for several variants of the MaxCover problem, with the focus on algorithms that run in FPT time. In the MaxCover problem we are given a set N of elements, a family S of subsets of N, and an integer K. The goal is to find up to K sets from S that jointly cover (i.e., include) as many elements as possible. This problem is well-known to be NP-hard and, under standard complexity-theoretic assumptions, the best possible polynomial-time approximation algorithm has approximation ratio (1 - 1/e). We first consider a variant of MaxCover with bounded element frequencies, i.e., a variant where there is a constant p such that each element belongs to at most p sets in S. For this case we show that there is an FPT approximation scheme (i.e., for each B there is a B-approximation algorithm running in FPT time) for the problem of maximizing the number of covered elements, and a randomized FPT approximation scheme for the problem of minimizing the number of elements left uncovered (we take K to be the parameter). Then, for the case where there is a constant p such that each element belongs to at least p sets from S, we show that the standard greedy approximation algorithm achieves approximation ratio exactly (1-e{-max(pK/|S|, 1)}). We conclude by considering an unrestricted variant of MaxCover, and show approximation algorithms that run in exponential time and combine an exact algorithm with a greedy approximation. Some of our results improve currently known results for MaxVertexCover.

Citations (12)

Summary

We haven't generated a summary for this paper yet.