Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Approximating the MaxCover Problem with Bounded Frequencies in FPT Time (1309.4405v1)

Published 17 Sep 2013 in cs.DS

Abstract: We study approximation algorithms for several variants of the MaxCover problem, with the focus on algorithms that run in FPT time. In the MaxCover problem we are given a set N of elements, a family S of subsets of N, and an integer K. The goal is to find up to K sets from S that jointly cover (i.e., include) as many elements as possible. This problem is well-known to be NP-hard and, under standard complexity-theoretic assumptions, the best possible polynomial-time approximation algorithm has approximation ratio (1 - 1/e). We first consider a variant of MaxCover with bounded element frequencies, i.e., a variant where there is a constant p such that each element belongs to at most p sets in S. For this case we show that there is an FPT approximation scheme (i.e., for each B there is a B-approximation algorithm running in FPT time) for the problem of maximizing the number of covered elements, and a randomized FPT approximation scheme for the problem of minimizing the number of elements left uncovered (we take K to be the parameter). Then, for the case where there is a constant p such that each element belongs to at least p sets from S, we show that the standard greedy approximation algorithm achieves approximation ratio exactly (1-e{-max(pK/|S|, 1)}). We conclude by considering an unrestricted variant of MaxCover, and show approximation algorithms that run in exponential time and combine an exact algorithm with a greedy approximation. Some of our results improve currently known results for MaxVertexCover.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube